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Nickel-Catalyzed Allylic C(sp®)—F Bond Activation of Trifluoromethyl
Groups via f-Fluorine Elimination: Synthesis of Difluoro-1,4-dienes
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ABSTRACT: The nickel-catalyzed defluorinative coupling of
2-trifluoromethyl-1-alkenes and alkynes with the aid of Et;SiH
provides 1,1-difluoro-1,4-dienes under mild reaction condi-
tions. This reaction involves selective allylic C(sp*)—F bond

activation via f-fluorine elimination from nickelacyclopentenes.

P
R F cat. Ni(0) R4 _R3
+ RMM ——>

R3 g
F + S FoC
i w? 5
R R! R2

KEYWORDS: C—F bond activation, nickel catalysis, trifluoromethylalkenes, alkynes, 1,4-dienes, p-fluorine elimination

arbon—fluorine (C—F) bond activation of the trifluoro-

methyl group is rarely achieved not only because of the
high bond energy but also presumably because of the shielding
effect of the lone-pair electrons of the three fluorine atoms.
Although defluorinative functionalization of trifluoromethyl-
bearing compounds would realize one of the most straightfor-
ward approaches to fluorine-containing compounds, harsh reac-
tion conditions have typically been required to cleave C(sp®)—F
bonds of trifluoromethyl groups."”

Recently, we reported the nickel-mediated [3 + 2] cyclo-
addition of 2-trifluoromethyl-1-alkenes 1 and alkynes 2 via double
C—F bond cleavage of a trifluoromethyl group under mild
reaction conditions (Scheme 1a).3 In this reaction, ring-opening
of nickelacycle A, formed via oxidative cyclization of trifluoro-
methylalkenes 1 and alkynes 2 with Ni(0), readily proceeded
via f-fluorine elimination® to generate alkenylnickel(II) species B.
Subsequent S-endo insertion and a second f-fluorine elimination
afforded 2-fluoro-1,3-cyclopentadienes 3 (Scheme 1, path a). The
potential advantage of f-fluorine elimination prompted us to
develop a nickel-catalyzed three-component coupling reaction of
2-trifluoromethyl-1-alkenes 1, alkynes 2, and metal species, which
would proceed via the selective cleavage of one of the C(sp®)—F
bonds.”® We assumed that alkenylnickel(IT) fluorides B, inter-
mediates toward 2-fluoro-1,3-cyclopentadienes 3, might be trans-
metalated, for example, by an appropriate metal hydride (R = H)
to afford the corresponding 1,1-difluoro-1,4-dienes 4 along with
regeneration of Ni(0) (Scheme 1b, path b).”

To prove our hypothesis, we sought a metal hydride reagent
suitable for the coupling reaction of a-trifluoromethylstyrene
(1a) and 4-octyne (2a) in the presence of a catalytic amount
of Ni(cod), and PCyjs in toluene at SO °C (Table 1). In the
absence of any hydride sources, fluorocyclopentadiene 3aa
was obtained in 3% yield, as we reported previously (Table 1,
entry 1). The use of i-PrONa as a hydride source afforded
1,1-difluoro-1,4-diene 4aa with the E configuration as the sole
product in 74% yield via cleavage of the C—F bond in the
trifluoromethyl group and formation of the C—C and C—H bonds
(entry 2).”* When 9-BBN or DIBAL-H was employed, 1a was de-
composed to give a complex mixture because of their electrophilic
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Scheme 1. Ni-Catalyzed Defluorinative Coupling of
2-Trifluoromethyl-1-alkenes 1 with Alkynes 2
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(a) Our Previous Work:
Stoichiometric [3+2] Cycloaddition

reactivity (entries 3 and 4). Consequently, Et;SiH was found to be
highly effective for improving the product yield to 92% (entry 5). &
Even 5 mol % of the Ni catalyst successfully promoted the coupling
reaction to give 4aa in 93% isolated yield (entry 6).

The scope of suitable trifluoromethylalkene substrates 1 and
alkynes 2 was then examined under the reaction conditions
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Table 1. Optimization of the Reaction Conditions for
Ni-Catalyzed Defluorinative Coupling of 1a with 2a

Ni(cod), (x mol %)

CFs Pr PCys (2x mol %) F,C M P
v Z ; : u
Ph Pr metal hydride (2.0 equiv) Ph Pr
Toluene, 50 °C, 3 h
1a 2a 4aa
(1.1 equiv)

entry x/mol % metal hydride 4aa/%“" 3aa/%"
1 10 none 0 3
2 10 i-PrONa 74 0
3 10 9-BBN 15 0
4 10 DIBAL-H 0 0
S 10 Et;SiH 922 0
6 5 Et;SiH 93° 0

“Yield was determined by '’F NMR measurement using PhCF; as an
internal standard. “Tsolated yield.

Table 2. Synthesis of 1,1-Difluoro-1,4-dienes 3 via
Ni-Catalyzed Defluorinative Coupling of 1 with 2

Ni(cod), (5 mol %)
R3

PCyjz (10 mol %) F,c M
—_—
Et3SiH (2.0 equiv) R1k/\[ﬂz

Toluene, 50 °C, 3 h

CF,4 RS

R1& " Rz/

2 4
(1.1 equiv)

entry R! (1) R% R’ (2) yield/%

1 Ph (1a) Pr, Pr (2a) 4aa 93

2 C¢H,(0-OMe) (1b) Pr, Pr (2a) 4ba 84

3 CeH,(p-OMe) (1c) Pr, Pr (2a) 4ca 80

4 CeH,(p-Ac) (1d) Pr, Pr (2a) 4da 94

st C¢H,(p-CO,Et) (1e)  Pr, Pr (2a) 4ea 88

6° C¢H,(p-Cl) (1f) Pr, Pr (2a) 4fa 91

7%¢ CH,CH,Ph (1g) Pr, Pr (2a) 4ga 86

8% SiMe,Ph (1h) Pr, Pr (2a) 4ha 79

9%"  Ph (1a) Ph, Ph (2b) 4ab 72

10° H(1i) Ph, Ph (2b) 4ib 77

11¥/° Ph (1a) Pr, Ph (2¢) 4ac 99

128/ Ph (la) Pr, C¢H,(p-OMe) (2d)  4ad 99

13 Ph (1a) Pr, C¢H,(p-CO,Et) (2¢)  4ae 65

14 Ph (1a) Me, Ph (2f) 4af 91

15 Ph (1a) i-Pr, Me (2g) 4ag 88 (95:5)’

“Reaction conditions: Ni(cod), (5 mol %), PCy; (10 mol %), 1
(0.50 mmol), 2 (0.55 mmol), Et,SiH (1.0 mmol), toluene (2.5 mL),
50 °C, 3 h. ’4 h. <2 h. “Ni(cod), (10 mol %), PCy; (20 mol %) and
ZtF, (10 mol %) were used as catalysts. °80 °C, 15 h. /RT, 2 h.
8SIMes-HCI (5 mol %) and +BuOK (5 mol %) were used instead of
PCy;. BRT, 8 h. ‘Reaction was performed using Ni(cod), (10 mol %),
SIMesHCI (10 mol %), +BuOK (10 mol %), 1i (1.0 atm), 2b
(0.37 mmol), Et;SiH (0.74 mmol), toluene (1.9 mL), 80 °C, 10 h.
/RT, 3 h. kNi(cod)z (10 mol %), PCy, (20 mol %), 4 h. lRegioisomer
ratio was determined by ’F NMR.

obtained above (Table 2). The a-trifluoromethylstyrenes 1b
and 1c bearing electron-donating methoxy groups provided
1,1-difluoro-1,4-dienes 4ba and 4ca, in good yields (entries 2
and 3, respectively), as did the a-trifluoromethylstyrenes 1d
and le bearing electron-withdrawing acetyl and ethoxycarbonyl
groups (4da and 4ea, entries 4 and S, respectively). Intriguingly,
o-trifluoromethylstyrene 1f with a chlorine substituent, which
could undergo oxidative addition to Ni(0), also participated in the
reaction without the loss of the C—Cl bond (entry 6). Alkyl- and
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silyl-substituted trifluoropropenes 1g and 1h successfully
underwent the coupling reaction with 2a in the presence of
10 mol % ZrF, as a cocatalyst, leading to high yields of 4ga and
4ha (entries 7 and 8), respectively.” The use of diphenylace-
tylene (2b) with la resulted in the formation of the corre-
sponding coupling product 4ab in 72% yield (entry 9). In the
case of coupling between 2b and 3,3,3-trifluoropropene (1i),
use of SIMes instead of PCy; promoted the reaction to afford
4ib in 77% yield (entry 10). Unsymmetrical 1-phenylpent-1-
yne (2c), 1-(4’-methoxyphenyl)pent-1-yne (2d), 1-(4’-ethoxy-
carbonylphenyl)pent-1-yne (2e), 1-phenylprop-1-yne (2f), and
4-methylpent-2-yne (2g) also participated in this reaction with
1a to afford the corresponding 1,1-difluoro-1,4-dienes 4ac—4ag
in good to excellent yields with good to complete regio-
selectivities (entries 11—15). The obtained regioselectivities
were in agreement with literature reports of nickel-catalyzed
coupling reactions of alkynes via oxidative cyclization.”
Furthermore, the reaction of p-trifluoromethylcinnamate 1j
(E/Z = 83:17) successfully proceeded with 3-hexyne (2h) to
afford the corresponding 1,1-difluoro-1,4-diene 4jh in 65%
yield eq 1.

/Et
/
Et 2h (2.0 equiv)

Ni(cod), (20 mol %)

PCys3 (40 mol %) Et

CF H
8 ZtF,, (20 mol %) FoC "
X
Ph Et;SiH (2.0 equiv) Ph Et
COEt  1ouene, 80 °C, 12 h CO,Et
1j 4jh 65%
(EIZ=83:17)

For this reaction, there are three plausible mechanisms that
can be induced by different initial steps: (i) oxidative cyclization
of 2-trifluoromethyl-1-alkenes 1 and alkynes 2 with Ni(0)
(Scheme 2, path c), (ii) oxidative addition of a C—F bond of 1
to Ni(0) (path d),'* and (iii) oxidative addition of an Si—H
bond to Ni(0) (path e).'"'* In paths ¢ and d, the common
intermediates B are formed via an oxidative cyclization/f-fluorine
elimination or an oxidative addition/insertion sequence. Trans-
metalation of B with Et;SiH and subsequent reductive elimi-
nation afford 1,1-difluoro-1,4-dienes 4. Conversely, in path e,
oxidative addition of Et;SiH to Ni(0) initially occurs to provide
silylnickel hydride F. Subsequent hydrometalation of alkyne and
alkene insertion followed by p-fluorine elimination from the
alkylnickel complexes G gives 4.

To elucidate the mechanism, the stoichiometric reaction of
2-trifluoromethyl-1-alkene 1d and Et,SiH with a Ni(0) complex
in C¢Dg at room temperature was performed and monitored by
'H, ’F, and *'P NMR eq 2. Nickelacyclopropane 5 was obtained
as the sole product in 93% yield, and neither allylnickel(II)
complex E nor silylnickel hydride F generated by oxidative
addition of 1d or Et;SiH to Ni(0) was observed. Thus, the
possibility of path e was lessened. Moreover, treatment of the
obtained reaction mixture with alkyne 2a afforded the coupling
product 4da in 70% vyield from 1d along with 94% yield of
Et;SiF. These results suggest that the C—F bond activation may
proceed via an oxidative cyclization/f-fluorine elimination
sequence in this reaction (Scheme 2, path c). Note that the
oxidative cyclization process determined the stereochemistry of
alkyne-derived alkene moieties of 4 (syn addition).

Organozinc and organoaluminum reagents were also employed
as a third component in the catalytic coupling reactions eqs 3 and 4.
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Scheme 2. Plausible Reaction Mechanisms for the
Ni-Catalyzed Defluorinative Coupling Reaction
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7 63%

On treatment with ZnMe,, 2-trifluoromethyl-1-alkene 1la and
alkyne 2a underwent the nickel-catalyzed defluorinative cou-
pling to afford methylated 1,1-difluoro-1,4-dienes 6 eq 3. Trans-
metalation of alkenylnickel(II) fluorides B with ZnMe, caused
introduction of a methyl group into the product. In contrast,
the reaction of 1a and 2a with AlMe; afforded triply methylated
1,4-diene 7 via cleavage of the three C—F bonds eq 4.”>"
Furthermore, not only trifluoromethylalkenes but also difluo-
roallylic compounds underwent nickel-catalyzed defluorinative
coupling eqs 5—7. The reaction of a-difluoromethylstyrene (8)
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Ni(cod), (5 mol %)

CHF, Pr PCys (10 mol %) F
+ 2 nenasems WY PR ©
Ph Pr Et;SiH (2.0 equiv) r
Toluene, 50 °C, 3 h Ph Pr
8 2a 9 82% (E/Z = 50:50)
(1.1 equiv)
Ni(cod), (5 mol %)
CF,4 H
CyFs Me PCy; (10 mol %)
A0 menaoea FWMe ®)
R Me Et3SiH (2.0 equiv)
Toluene, 50 °C, 3 h R Me
10 2h 11 97% (E/Z = 5:95)
(2.0 equiv) R =biphenyl-4-yl
Ni(cod), (10 mol %) . H
C4F, Ph  PCyj; (20 mol %)
&9 + Z F/C th ™
H Ph Et;SiH (1.0 equiv) 73
Toluene, 80 °C, 7 h H Ph
12 13 86%
(1.0 equiv)

with alkyne 2a was promoted by the nickel catalyst in the
presence of 2.0 equiv of Et;SiH. Allylic C—F bond cleavage
afforded the corresponding 1-fluoro-1,4-diene 9 in 82% yield
(E/Z = 50:50, eq S). Regioselective C—F bond activation of
perfluoroalkyl alkenes was also affected by this method eqs 6
and 7. The 2-pentafluoroethyl-1-alkene 10 readily reacted with
2-butyne (2h) and Et;SiH in the presence of the nickel catalyst.
Allylic C—F bond cleavage selectively occurred to afford the
corresponding trifluoromethylated fluorodiene 11 in 97% yield
with high stereoselectivity for the Z fluoroalkene moiety (E/Z =
5:95, eq 6)."" Similarly, the reaction of 2-nonafluorobutyl-1-
alkene 12 smoothly proceeded to afford heptafluoropropylated
fluorodiene 13 in 86% yield with exclusive Z-selectivity in the
fluoroalkene moiety eq 7."*

In summary, we have developed a methodology for catalytic
C(sp®>)—F bond activation of the trifluoromethyl group via
Pluorine elimination from nickelacyclopentenes generated by
the stepwise oxidative cyclization of 2-trifluoromethyl-1-alkenes
1 and alkynes 2 with Ni(0). The metal—fluorine bond in the
intermediary alkenylnickel(II) fluoride is effectively trans-
formed into a metal—hydrogen (methyl) bond by a hydrosilane
(a dialkylzinc), regenerating Ni(0). This reaction provides a
regio- and stereoselective method for the synthesis of multis-
ubstituted difluoroalkenes, which have attracted considerable
attention as blolsosteres of carbonyl compounds in pharma-
ceutical science'® and as building blocks for further trans-
formation into fluorine-containing compounds."'
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